Clonal analyses reveal roles of organ founding stem cells, melanocyte stem cells and melanoblasts in establishment, growth and regeneration of the adult zebrafish fin.

نویسندگان

  • Shu Tu
  • Stephen L Johnson
چکیده

In vertebrates, the adult form emerges from the embryo by mobilization of precursors or adult stem cells. What different cell types these precursors give rise to, how many precursors establish the tissue or organ, and how they divide to establish and maintain the adult form remain largely unknown. We use the pigment pattern of the adult zebrafish fin, with a variety of clonal and lineage analyses, to address these issues. Early embryonic labeling with lineage-marker-bearing transposons shows that all classes of fin melanocytes (ontogenetic, regeneration and kit-independent melanocytes) and xanthophores arise from the same melanocyte-producing founding stem cells (mFSCs), whereas iridophores arise from distinct precursors. Additionally, these experiments show that, on average, six and nine mFSCs colonize the caudal and anal fin primordia, and daughters of different mFSCs always intercalate to form the adult pattern. Labeled clones are arrayed along the proximal-distal axis of the fin, and melanocyte time-of-differentiation lineage assays show that although most of the pigment pattern growth is at the distal edge of the fin, significant growth also occurs proximally. This suggests that leading edge melanocyte stem cells (MSCs) divide both asymmetrically to generate new melanocytes, and symmetrically to expand the MSCs and leave quiescent MSCs in their wake. Clonal labeling in adult stages confirms this and reveals different contributions of MSCs and transient melanoblasts during growth. These analyses build a comprehensive picture for how MSCs are established and grow to form the pigment stripes of the adult zebrafish fins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kit signaling is involved in melanocyte stem cell fate decisions in zebrafish embryos.

Adult stem cells are crucial for growth, homeostasis and repair of adult animals. The melanocyte stem cell (MSC) and melanocyte regeneration is an attractive model for studying regulation of adult stem cells. The process of melanocyte regeneration can be divided into establishment of the MSC, recruitment of the MSC to produce committed daughter cells, and the proliferation, differentiation and ...

متن کامل

Fate restriction in the growing and regenerating zebrafish fin.

We use transposon-based clonal analysis to identify the lineage classes that make the adult zebrafish caudal fin. We identify nine distinct lineage classes, including epidermis, melanocyte/xanthophore, iridophore, intraray glia, lateral line, osteoblast, dermal fibroblast, vascular endothelium, and resident blood. These lineage classes argue for distinct progenitors, or organ founding stem cell...

متن کامل

Establishing a new animal model for muscle regeneration studies

Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system.  Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...

متن کامل

Requirements for the kit receptor tyrosine kinase during regeneration of zebrafish fin melanocytes.

Embryonic neural crest-derived melanocytes and their precursors express the kit receptor tyrosine kinase and require its function for their migration and survival. However, mutations in kit also cause deficits in melanocytes that make up adult pigment patterns, including melanocytes that re-establish the zebrafish fin stripes during regeneration. As adult melanocytes in mice and zebrafish are g...

متن کامل

Melanocyte regeneration reveals mechanisms of adult stem cell regulation.

Utilization of adult stem cells in regenerative therapies may require a thorough understanding of the mechanisms that establish, recruit and renew the stem cell, promote the differentiation of its daughters, or how the stem cell is repressed by its target tissue. Regeneration of melanocytes in the regenerating zebrafish caudal fin, or following larval melanocyte-specific ablation, or recruitmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 23  شماره 

صفحات  -

تاریخ انتشار 2010